In Blog, Inverters, Micro Inverters & Optimisers, Solar for Beginners, Solar Panels

Solar Voltage Rise can significantly reduce your solar production, but the problem often ignored. It’s one thing to use a quality inverter and panels, but if solar voltage rise is not considered by your solar installer, then your solar may produce significantly less than it should have.

In part one I’ll explain what voltage is, why solar voltage rise occurs, and then show three methods for solar voltage rise calculation. In part two we’ll look at why you should want to minimise voltage rise. In part three I’ll explain four ways a quality solar electrician will do that. I’ll also reveal an inverter preset “handbrake” that you may be able to turn off.


Part 1: Why does voltage rise?

VoltmeterIn Australia, the nominal grid voltage is either 230 or 240 Volts. The grid voltage levels will vary and fluctuate throughout the day depending on how much power is being drawn from the grid, and how much solar is being sent back. It’s common to see voltage fluctuations of 10 volts throughout the day. It’s the job of the electricity distributor to maintain your voltage – between about 217 volts and 254 volts. But keeping the voltage below 254 is becoming more of a challenge for the electricity distributors.


Solar Voltage Rise

When your solar system is producing more power than your home is using, it sends the excess back to the grid. In order for power to flow from your home to the grid, the voltage from the solar inverter has to produce a voltage that is a couple of volts higher than the grid voltage. Voila, Solar Voltage Rise.

In the ideal situation, the voltage rise is not a problem: the inverter increases the grid voltage from 240 volts to 242 volts. The problem arises when the customer’s cables between the inverter and the grid are too small for the size of their solar system. Let’s get back to basics to understand why.



Volts, amps, ohms, current, resistance. How do they relate to one another?

Ohms law personified

  •  Voltage is the muscle that gets the current through. In Australia, that muscle is around 240 volts (V).
  • Current is the rate of flow. A 5kW inverter will pump out around 20 amps at lunchtime. We measure current in Amps (I).
  • Resistance prevents current from flowing. Resistance depends on the cables diameter, length, and whether it is made of copper or aluminium. We measure resistance in ohms (Ω).

In the illustration, if the resistance pulls harder, either the current needs to get thinner, or the voltage needs to get stronger. In 1827 Georg Simon Ohm egotistically called this co-dependent relationship “Ohm’s law”.


Ohms Law

Ohms law is the mathematical relationship between voltage, current and resistance:

  • V= I×R
  • Voltage  = Current  x Resistance
  • Volts = Amps x Ohms

Ohm's law eqasionTo keep the equation balanced, if the resistance in your property’s cable is high, either the voltage from your inverter will have to be higher, or the current to the street will have to be lower.

But reducing current is a stupid idea. If your inverter wants to send 20 amps back to the grid, then we should “let it flow”.

The only way left to balance the equation is to increase the voltage even more.

The higher your cable’s resistance is, the higher the voltage must be to force the current to the street. Solar Voltage Rise starts becoming a problem.


Voltage Rise and Voltage Drop

Solar Voltage Rise is a relatively new issue that is causing problems with solar systems and grid voltages around Australia. The more solar that is installed in your street, the higher the grid voltage gets at lunchtime.

solar voltage riseWhile Solar Voltage Rise is a relatively new problem, the opposite problem has been well known since Thomas Eddison lit up New York City streets. It’s called voltage drop.

Voltage drop is the same phenomena as voltage rise, but it is seen from the grid side rather than the household side.  Assuming there was no solar to account for, the transformer in your neighbourhood may be set to pump out voltage at 250 volts. By the time that voltage gets to the last house of your street, the resistance of all the cable may have dropped the voltage to 230 volts.  By the time the voltage gets to the welder in his shed down the back paddock, it may have dropped to 215 volts.

Electricians minimise voltage drop by choosing the correct cable for the anticipated load. The same formulas and tools we use to work out voltage-drop can be used in reverse for solar voltage rise calculation.


Solar Voltage Rise Calculation

According to the Australian Standards AS/NZS 4777, the voltage-rise between a solar inverter and the street can be no more than 2 per cent (about 5 volts). In theory, you can use ohms law to calculate the voltage rise of a cable if you know the resistance and reactance of the cable. But there are much more realistic ways to work out what size cable we need to use, or how big of a solar system we can install on your home.


Voltage rise calculationVoltage Rise Calculation Method 1

Work it out old school. Buy a copy of AS/NZS 3008.1.1 for 300 bucks and use one of the four methods it lists. The most common method is described in section 4.2. First, find the correct “millivolts per amper metre” figure from the correct table. Next insert that figure it into the formula: Vd = [L x I x (mV/A.m)] / 1000. Then account for the number of phases and turn it into a percentage of the voltage. Keep trying till you get the desired cable size, length or current.

While this is the hard way, its the best way if you want to get a solid understanding of voltage rise calculation. But there is a cheats way to calculate solar voltage rise effectively and it doesn’t cost a cent.


Bambach voltage rise caculation appVoltage Rise Calculation Method 2

The easy way to work out voltage rise is to download a solar voltage rise calculation app. You just need to know the size and length and type of cable. The app I use is called WireWizard by Bambach cables. The app is only on IPhone but it’s also available online. I’ve compared the app’s results with the AS/NZS 3008 pen and paper method, and it worked spot on every time.



Accurate Voltage rise calculation Voltage Rise Calculation Method 3

But sometimes we can’t be confident of the overhead cable sizes or length and route of the existing underground cable. And what happens if there is a high resistant joint in the cable? In this case, it’s best to get an actual measurement of the voltage drop. Get a couple of voltmeters and a clamp meter and make an actual measurement of the voltage on the street and the voltage at the house while drawing the known current with a clampmeter.

We regularly use Method 2 and method 3 for voltage rise calculations to be sure we are not installing a solar system that will have a solar voltage rise issue.


Part 2: Why should I care about Solar Voltage Rise?

There are three reasons you may want to reduce household voltage. It’s all about the money.

1. Inverter cycling

In part one, I explained that the fatter the current is, the stronger the voltage needs to be to push that current back out to the grid. Guess when your solar system is running at fattest current? At lunchtime, when it is producing maximum power!

So if the current is at its highest at lunchtime, the voltage will have to be at it’s highest so that it can muscle all of that current back to the grid. The problem is, half the people on your street have solar too. Everyone is lifting the grid voltage at the same time. The voltage from your inverter needs to keep getting higher and higher. Inverter cycling begins.

Inverter cyclingWhen your inverter is off, you are not making energy. When you are not making energy, you are losing money. It’s all about the money.

2. Burning out appliances

If your solar inverter regularly spends it’s lunchtime cycling off and on and reaching high voltages, it won’t last as long. Many appliances, particularly older 3 phase motors, older fluorescent lights and incandescent lamps will fail quicker with higher voltage. Fortunately, modern houses with inverter air-conditioners and led lights are less susceptible to damage from higher voltages.

3. Conservation voltage reduction

An idea sometimes promoted in the solar industry is to sell homeowners a voltage regulator to reduce their power consumption. The idea is that if you run your appliances at 225 volts instead of 255 volts, you’ll reduce your energy consumption. Well yes, but no.

Conservation voltage reduction is a concept employed by Electricity Distributors to reduce the strain and power loss on the grid by reducing grid voltage.  Factories with multiple older style 3 phase inductive motors and older style fluorescent lights will also see savings by installing a voltage regulator. However, most modern household appliances will see minimal or no energy consumption savings by reducing your voltage.

Minimising your household voltage may prevent older appliances burning out prematurely, and it may save you a smidgeon on our power bill. But the main reason you would want to keep the voltage low at your place is just so your inverter will stay online and that sunshine can make you money. It’s all about the money.



Part 3. How do we minimise Solar Voltage Rise?

Electricity Distributors are continually adjusting grid voltage to attempt to keep it within required limits. But high grid voltage isn’t a problem that can be solved so easily. The real world has shown that Electricity Distributors can’t always keep your voltage below 253 volts. It’s the electrician’s responsibility to ensure the solar voltage rise at your place no higher than 2 per cent (5 volts). But the less solar voltage rise we contribute, the less chance you will have of your inverter turning off at peak production times. There are various methods we can use to reduce solar voltage rise.


1. Use a three-phase inverter

3 Phase inverter

Fronius Symo – a 3 phase inverter.

One solution is to install a 3 phase inverter. A 3 phase inverter will divide the current over 3 different cables. Instead of 21 amps being forced to the grid through one cable, you have 7 amps being sent back through 3 cables. Ohm law has shown us if we lower the current, we lower the solar voltage rise proportionally.

It’s often cost prohibitive to upgrade an older home to 3 phase. But if you already have 3 phase at your house, we recommend spending a little more on a 3 phase solar inverter. If you are building a new home, it won’t cost much more to install 3 phase during the build. (Installing 3 phase will also allow you to install a much larger solar system)

DID YOU KNOW… if you only have single phase, you can still install up to 13kW of solar panels in Qld. Read Ben’s post about installing a 10kW inverter on single phase.


2. Increase your cable size

Cable sizesA 5kW inverter produces a maximum of 21 amps. Any electrician can tell you 2.5mm2 is big enough for 21 amps. After all, 2.5mm2 cable is used to connect power points in every home in Australia. But after doing a solar voltage rise calculation, most solar electricians will use a minimum of 4mm2 cable to keep your voltage rise below 2 per cent. At MC Electrical, we know how important it is to keep your voltage drop as low as possible. Our standard cable for a 5kW single-phase inverter is 6mm2. If the inverter is a long way from your switchboard and our solar voltage rise calculations are approaching 2 per cent, we will run parallel 6mm2 cables just to be sure.


2. Install your inverter near your Switchboard

To minimise solar voltage rise, we always try to minimise the length and increase the size of the cable between your switchboard and your inverter. Compare the two scenarios:
  1. Installing a 5kW inverter 5 meters away from your switchboard. A voltage rise calculation shows a 0.3 per cent voltage rise when we use our standard 6mm2 cable.
  2. Install the same 5kW inverter 25 meters away. Increase your cable to 10mm2. Your voltage rise issue would increase to 0.9 per cent.

Installing your inverter further away from your main switchboard means your material cost goes up, your labour cost goes up, and solar your voltage rise goes up.


4. Correctly program volt response modes

Voltage rise handbrakeThe 2015 update of the Australian standards for solar inverters (AZ/NZS 4777.2) detailed a bunch of grid support functions to help inverters reduce the overvoltage problem created by solar. While some of these functions were only a recommendation, almost every inverter manufacturer I contacted had implemented the recommended settings.

The problem is the pre-set values act like a really nasty handbrake on your solar system. You’ll want your installer to adjust them. These volt-response settings differ slightly from one Electricity Distributor to the next. The below example shows the standard preset values and the more flexible values permitted by Energex and Ergon (Qld). If your sparkie is not up to speed with the correct voltage settings and leaves your inverter with its preset values, then your inverter will reach the overvoltage values prematurely.


Volt response mode settings

Volt-Watt Response Mode

This outdated function is pre-set in your inverter to reduce in its maximum production capacity in a linear fashion between 250 volts and 265 volts. This means that if the voltage at your inverter is a legal 256 volts, then your inverter will be limited to 68% of its capacity. This will happen even if you are consuming all of your solar production and not contributing to voltage rise. That’s not splitting hairs – that’s a like pulling on your handbrake while you’re cruising down the highway.

The CEC has pointed out that Volt-Watt response mode is a “blunt instrument”. I suggest in Qld we should be turning Volt-Watt off or increasing the lower limit to 255 volts.  These values may be specified by your Electricity Distributor so it’s important to check that first. In Qld, the Volt-Watt setting is not required.

If the voltage at your inverter is a legal 256 volts, then your inverter will be limited to 68% … that’s not splitting hairs, that’s like pulling a handbrake …

Volt-Var Response Mode

Volt Var response mode will be OFF by default. If your sparkie takes the time to correctly enable Volt-Var mode, your inverter will gradually limit the production capacity when the voltage gets high. This can help prevent your inverter tripping from overvoltage. (The values required in Qld are; between 248 volts and 253 volts, your inverter will reduce to 90% of its maximum capacity or a 0.9 power factor).
If the wrong mode is chosen, your inverter will be reduced to 90% of its maximum capacity even at normal operating voltages (eg, a 5kW inverter will only ever get to 4.5kW max).

Sustained overvoltage

Your inverter reaches 257 volts for 10 minutes – your inverter will turn off (a Qld Setting limit).  If your sparkie ignores this adjustment, the inverter will turn off at 255 volts after 10 minutes.

Overvoltage #1

Your voltage reaches 260 volts for more than 1 second – your inverter will turn off.

Overvoltage #2

Your voltage reaches 265 volts. Your inverter will turn off.

The hurdle

Now, this is all fine-and-dandy if your installer is up to speed with these settings and takes a few minutes to adjust your Fronius inverter while onsite. However many inverters require you to have a laptop with windows and the correct adaptor to adjust these setting (a pain for us Macbook users). Enphase and SolarEdge require us to jump high hoops so their engineers will create new grid profiles.

At the end of the day, if your sparkie leaves your inverter at the inverter’s preset values, then your inverter will be programmed to turn off at conservative preset voltages. You’ll potentially be driving down the road with the handbrake on.



Solar Voltage Rise is a problem created by solar and the problem that we need to proactively address. The relationship between voltage current and resistance means if you have a small cable between the street and the inverter, you will have a solar voltage rise problem. While high voltage can cause various issues, the biggest problem is it causes inverters to ramp down or shut off and stop producing solar. The practical ways to combat voltage rise include using a three-phase inverter, using larger cable, installing your inverter near your switchboard, and setting the inverters volt response mode function correctly. Of course, to do this, you really want to choose a sparkie who understands voltage rise calculations and how to minimise it.

Mark Cavanagh

Leave a Reply

Your email address will not be published. Required fields are marked

13 Comments on Solar Voltage Rise – why you should care

Mark C said :administrator Report 2 weeks ago

Hi Frances, don't be concerned! I was referring to the AC voltage (output of the inverter) and you are referring to the DC voltage (combined output voltage of the panels). DC voltage can sit anywhere between 100 and 600 volts depending on how many panels you have.

    John Alderson said :Guest Report 3 weeks ago

    Very informative, I am a retired sparkie who no longer has the required credentials but I am well aware of the principles. I have recently had a 5kw inverter and 6.6kw panels installed on 16mm 2 phase supply, single phase to house 45m from meters to inverter. My Goodwe inverter is cycling. Supply voltage rises throughout the day, but the supply authority believes that the supply is within parameters 5%. Your information give me an incite but I feel that I am between a rock and a hard place as the installer doesn’t want to know me and Essential Energy believes they are supplying at the right potential. The property is a rural property with its own 25kva sub. At least after reading your article I have a clearer idea of what can be suggested. I don’t believe that voltage rise should be a problem but the inverter is cycling on a high voltage fault between 11am to 3pm throughout the day.

    • 2787
    Francis said :Guest Report 3 weeks ago

    My solar output shows regularly over 300 volt and I'm concerned this is too high What should I do to regulate the output voltage I have a 21 panel Trina panel system running through a,sunny boy single phase 5 kW invertor about 5 years old

    • 5045
    Mark C said :administrator Report a month ago

    Hi Ian, yes it will work but it is not technically correct to do this. Voltage rise has to be calculated on the inverter nominal output according to as5033. So if you were designing a system, you should design it correctly. If you are trying to fix a problem, then export limiting will work.

      Ian Holmes said :Guest Report a month ago

      Article comprises best advice found anywhere. Question is: In a situation where existing cables limit the inverter size due to 2% voltage drop limit, but extra solar capacity above this limit is required for 'behind the meter consumption', is it technically possible to have solar generation capacity greater than the restriction imposed by 2% voltage drop limits, and then have Fronius Smart Meters setup for export limiting according to service provider limits

      • 3437
      Grahame said :Guest Report 2 months ago

      Hi Mark many thanks for your articles, I've spent the last 3 months trying to sort out exactly what to buy to replace my existing 3kW system which is old and has a dead string. I have heavy shading and an East/West and Northwest/Southeast roof and had decided solar edge would be the best option till I read your blog (thanks again) So now I think Enphase is the solution but once again you have me questioning my decision, is it reasonable/possible to expect my installer to have the settings changed on the micros? The quote I have is for 25 x 315 Watt Trina Honey Panels or Longi x 315 Watt Panels and iQ7+ micros. It's a 2 storey house with the meter box a long way from the proposed panel locations (3 different orientations) I'm semi rural and a sparky mate tells me the local provider is limiting feed in to 3kW due to almost everone having solar, so voltage rise may be a significant issue.

      • 2537
      Mark Cavanagh said :administrator Report 3 months ago

      Hi Rob, at a local (street) level it's an issue because the local transformers don't have automatic voltage adjustment. This is is why we need the volt response modes I mentioned in the blog. But if we report the voltage of our customer is too high, the distributor can manually "tap" the voltage down at the local transformer. (However, sometimes this means the person at the end of that line has an under-voltage issue). At a substation level, they have Auto Tap Changers, so the voltage is adjusted through the day. Cloud cover is definitely an issue and I'm not sure how they get around that!

        Rob said :Guest Report 3 months ago

        This is great info, but how often is there only one home pushing solar feed-in? Can you please add your views on the even more important issue of what happens to voltage rise when everyone, possibly thousands of homes, downstream of the local transformer have solar and are all pushing up the voltage? Also, what then happens when the Sun ducks in and out of cloud at midday? PS I am fed up with replacing capacitors on my aircon....

        • 2155
        Michael Uhe said :Guest Report 3 months ago

        Thank you for this article .... Unfortunately, many solar people either don't understand this .. or ignore this ... I'm currently struggling to get resolution with my mother's system for exactly this issue ..

        • 3844
        Jon Edwards said :Guest Report 4 months ago

        Thanks once again Mark for the detailed analysis. Also, the points from Jez are illuminating (pun intended😂) There is another related factor; in fact, all the points about voltage rise and drop are related. I am talking about the SOURCE IMPEDANCE of the grid at the point of connection. (Source Impedance can be theorised to be like a resistor in series with the power supply) If the source impedance is high you will have to raise the voltage more (than the 2V quoted above?) to get the same amount of current to flow from the house into the grid. Similarly, if you switch on a heavy load on your premises, the source impedance determines how much the voltage drops at your connection point. It is affected by how much infrastructure is physically present at your location. It is much lower in industrial areas where there are plenty of substations, transformers, cables etc. It is much higher is regional areas where there is not much infrastructure. Unfortunately, there is not much you can do about it, but a wise installer can advise his customer accordingly in order to manage expectations of returns.

        • 4870
        Sharif said :Guest Report 4 months ago

        Great write up Mark. A complicated topic well explained for the layperson.

        • 4011
        David Johnson said :Guest Report 4 months ago

        Thank you for the very inciteful information on your Blog. I knew the situation with Solar and the grid was an involved one; what you wrote helped me understand further this relationship.

        • 4503
        Jez smith said :Guest Report 4 months ago

        This is all fine and true. But, I believe that the network operators are being lazy. As I was a liney before a sparky, we have installed HV regulators which automatically tap change on a demand response. Particularly when orchardists would all start irrigating at the same time. The network operas need to have this system in place in towns/cities rather than rural areas as they are now. These regulators could respond to an overvoltage and tap change as required. We are constantly finding the standing voltage at around 252/3 VAC before we switch the inverter on.

        • 2800
        Subscribe To Mark's Blog

        Subscribe To Mark's Blog

        Join our mailing list to receive the latest information, reviews and solar industry insights from MC Electrical owner Mark Cavanagh.

        You have Successfully Subscribed!